## Selective Deoxygenation of Nitrones Mediated by $Sm/CoCl_2\ 6H_2O$ Reductive System

Ji Ming ZHANG<sup>1</sup>, Yong Min ZHANG<sup>1,2</sup>\*

<sup>1</sup>Department of Chemistry, Zhejiang University (Xixi Campus), Hangzhou 310028 <sup>2</sup>State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

**Abstract:** In the presence of metallic samarium–cobalt (II) chloride hexahydrate, the nitrones can be reduced to the corresponding imines in moderate to high yields under mild and neutral conditions.

Keywords: Nitrone, samarium, cobalt (II) chloride hexahydrate.

Aldimines are an important class compounds<sup>1</sup> which can be prepared by selective deoxygenation of nitrones. Thus more attention was paid to the selective deoxygenation of nitrones in organic synthesis. The reducing reagents, include low-valent titanium<sup>2</sup>, acetic formic anhydride<sup>3</sup>, sodium hydrogen telluride<sup>4</sup>, tributyltin hydride<sup>4</sup>, terathiomolybdate<sup>5</sup>, metallic indium in aqueous media<sup>6</sup>, zinc-aluminum trichloride<sup>7</sup>, aluminum iodide<sup>8</sup>, triphenylphosphine<sup>9</sup>, etc. However, there are various limitations to their general utilities: (1) drastic reaction conditions which affect the substituents, and cause uncontrolled reduction of nitrones to amines rather than expected imines<sup>4</sup>, (2) not readily available or expensive reagents. (3) low temperature and dry reaction conditions<sup>2</sup>, (4) long reaction time<sup>5</sup>. Therefore, search for a more efficient, cheap and readily available reagent is required. In connection with our ongoing interest in developing new synthetic application of Sm/MCl<sub>n</sub> system<sup>10</sup>, we found Sm/CoCl<sub>2</sub> 6H<sub>2</sub>O is an efficient reducing reagent in the reduction of nitro compounds or azides<sup>11</sup>. To expand its uses, we apply Sm/CoCl<sub>2</sub> 6H<sub>2</sub>O reductive system to the deoxygenation of nitrones under mild and neutral conditions in THF (as shown in **Scheme 1**).

Scheme 1

$$R_1$$
— $CH = N - R_2$ 
 $R_1$ — $CH = N - R_2$ 
 $R_1$ — $CH = N - R_2$ 
 $R_1$ — $CH = N - R_2$ 

\_

<sup>\*</sup> E-mail: yminzhang@mail.hz.zj.cn

The results are listed in **Table 1**. The selective deoxygenation of nitrones mediated by Sm/CoCl<sub>2</sub> 6H<sub>2</sub>O reductive system proceeded very smoothly to give the corresponding imines with satisfactory yields under mild conditions. Interestingly, the carbon-carbon double bond (entry 7), furan (entry 6), which are susceptible to saturation, remain intact. Moreover, aromatic methoxyl (entry 3 and 10) or chloro (entry 2, 5) substituted nitrones were selectively reduced to the corresponding imines.

| Table 1 | Selective deox | vgenation | of nitrones | with Sm/C | oCl₁6H₂O | reductive system |
|---------|----------------|-----------|-------------|-----------|----------|------------------|
|         |                |           |             |           |          |                  |

| Entry | $R_1$                                            | $R_2$                             | Compd.     | Time (h) | Yield (%) <sup>a</sup> |
|-------|--------------------------------------------------|-----------------------------------|------------|----------|------------------------|
| 1     | Ph                                               | Ph                                | 2a         | 1        | 91                     |
| 2     | 4-ClC <sub>6</sub> H <sub>4</sub>                | Ph                                | 2 b        | 1        | 93                     |
| 3     | 4-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> | Ph                                | 2c         | 1        | 82                     |
| 4     | $4-CH_3C_6H_4$                                   | Ph                                | 2 d        | 1        | 81                     |
| 5     | 2-ClC <sub>6</sub> H <sub>4</sub>                | Ph                                | 2e         | 1        | 73                     |
| 6     | Furyl                                            | Ph                                | <b>2f</b>  | 1        | 82                     |
| 7     | Ph-CH=CH                                         | Ph                                | 2g         | 1        | 84                     |
| 8     | Ph                                               | 4-ClC <sub>6</sub> H <sub>4</sub> | 2h         | 1.5      | 88                     |
| 9     | Ph                                               | $4-CH_3C_6H_4$                    | 2i         | 1.5      | 75                     |
| 10    | Ph                                               | 4-CH3OC6H4                        | <b>2</b> j | 1.5      | 81                     |

<sup>&</sup>lt;sup>a</sup>The structures of all products are confirmed by IR, <sup>1</sup>H NMR.

## General procedure

To a mixture of Sm powder (2 mmol) and  $CoCl_2$   $6H_2O$  (2 mmol) was added THF (10 mL), then nitrone (1 mmol) was added under nitrogen atmosphere at room temperature. The mixture was allowed to react at room temperature for 1-1.5 hours. On completion of the reaction (monitored by TLC), the mixture was poured into saturated NH<sub>4</sub>Cl aqueous solution (50 mL) and extracted with diethyl ether (3×20 mL). The combined extracts were washed with saturated aqueous solution of  $Na_2S_2O_3$  (20 mL), saturated brine (20 mL), successively dried over anhydrous  $Na_2SO_4$ . After evaporating the solvent under reduced pressure, the crude product was purified by preparative thin layer chromatography using ethyl acetate and cyclohexane (1:4) as eluant.

## References

- G. Tennant, Comprehensive Organic Chemistry, Pergamon press, London, 1979, Vol. 2, p.383.
- 2. R. Balicki, Chem. Ber., 1990, 647.
- 3. N. Tokitoh, R. Okazaki, Chem. Lett., 1985, 1517.
- 4. D. H. R. Barton, A. Fekih, X. Lusinchi, Tetrahedron Lett., 1985, 38, 4603.
- P. Ilankumaran, S. Chaw, Tetrahedron Lett., 1995, 36, 4881.
- 6. A. Jeevanandam, C. Cartwright, Y. Ling, Syn. Commun., 2000, 17, 3153.
- 7. D. K. Dutta, D. Konwar, J. Chem. Res (s), **1998**, 266.
- 8. D. Konwar, R. C.Boruah, J. S. Sandhu, Synthesis, 1990, 337.
- S. Sivasubramanian, V. Ramamoorthy, G. Balasubramanian, Org. Prep. Proc. Int., 1995, 27, 221
- 10. Y. M. Zhang, Y. K. Liu, Chin. J. Chem., 2000, 2, 12.
- 11. H. Wu, R. Chen, Y. M. Zhang, J. Chem. Res (s)., 2000, 248.

Received 16 April, 2001