Selective Deoxygenation of Nitrones Mediated by $Sm/CoCl_2\ 6H_2O$ Reductive System Ji Ming ZHANG¹, Yong Min ZHANG^{1,2}* ¹Department of Chemistry, Zhejiang University (Xixi Campus), Hangzhou 310028 ²State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032 **Abstract:** In the presence of metallic samarium–cobalt (II) chloride hexahydrate, the nitrones can be reduced to the corresponding imines in moderate to high yields under mild and neutral conditions. Keywords: Nitrone, samarium, cobalt (II) chloride hexahydrate. Aldimines are an important class compounds¹ which can be prepared by selective deoxygenation of nitrones. Thus more attention was paid to the selective deoxygenation of nitrones in organic synthesis. The reducing reagents, include low-valent titanium², acetic formic anhydride³, sodium hydrogen telluride⁴, tributyltin hydride⁴, terathiomolybdate⁵, metallic indium in aqueous media⁶, zinc-aluminum trichloride⁷, aluminum iodide⁸, triphenylphosphine⁹, etc. However, there are various limitations to their general utilities: (1) drastic reaction conditions which affect the substituents, and cause uncontrolled reduction of nitrones to amines rather than expected imines⁴, (2) not readily available or expensive reagents. (3) low temperature and dry reaction conditions², (4) long reaction time⁵. Therefore, search for a more efficient, cheap and readily available reagent is required. In connection with our ongoing interest in developing new synthetic application of Sm/MCl_n system¹⁰, we found Sm/CoCl₂ 6H₂O is an efficient reducing reagent in the reduction of nitro compounds or azides¹¹. To expand its uses, we apply Sm/CoCl₂ 6H₂O reductive system to the deoxygenation of nitrones under mild and neutral conditions in THF (as shown in **Scheme 1**). Scheme 1 $$R_1$$ — $CH = N - R_2$ R_1 — $CH = N - R_2$ R_1 — $CH = N - R_2$ R_1 — $CH = N - R_2$ _ ^{*} E-mail: yminzhang@mail.hz.zj.cn The results are listed in **Table 1**. The selective deoxygenation of nitrones mediated by Sm/CoCl₂ 6H₂O reductive system proceeded very smoothly to give the corresponding imines with satisfactory yields under mild conditions. Interestingly, the carbon-carbon double bond (entry 7), furan (entry 6), which are susceptible to saturation, remain intact. Moreover, aromatic methoxyl (entry 3 and 10) or chloro (entry 2, 5) substituted nitrones were selectively reduced to the corresponding imines. | Table 1 | Selective deox | vgenation | of nitrones | with Sm/C | oCl₁6H₂O | reductive system | |---------|----------------|-----------|-------------|-----------|----------|------------------| | | | | | | | | | Entry | R_1 | R_2 | Compd. | Time (h) | Yield (%) ^a | |-------|--|-----------------------------------|------------|----------|------------------------| | 1 | Ph | Ph | 2a | 1 | 91 | | 2 | 4-ClC ₆ H ₄ | Ph | 2 b | 1 | 93 | | 3 | 4-CH ₃ OC ₆ H ₄ | Ph | 2c | 1 | 82 | | 4 | $4-CH_3C_6H_4$ | Ph | 2 d | 1 | 81 | | 5 | 2-ClC ₆ H ₄ | Ph | 2e | 1 | 73 | | 6 | Furyl | Ph | 2f | 1 | 82 | | 7 | Ph-CH=CH | Ph | 2g | 1 | 84 | | 8 | Ph | 4-ClC ₆ H ₄ | 2h | 1.5 | 88 | | 9 | Ph | $4-CH_3C_6H_4$ | 2i | 1.5 | 75 | | 10 | Ph | 4-CH3OC6H4 | 2 j | 1.5 | 81 | ^aThe structures of all products are confirmed by IR, ¹H NMR. ## General procedure To a mixture of Sm powder (2 mmol) and $CoCl_2$ $6H_2O$ (2 mmol) was added THF (10 mL), then nitrone (1 mmol) was added under nitrogen atmosphere at room temperature. The mixture was allowed to react at room temperature for 1-1.5 hours. On completion of the reaction (monitored by TLC), the mixture was poured into saturated NH₄Cl aqueous solution (50 mL) and extracted with diethyl ether (3×20 mL). The combined extracts were washed with saturated aqueous solution of $Na_2S_2O_3$ (20 mL), saturated brine (20 mL), successively dried over anhydrous Na_2SO_4 . After evaporating the solvent under reduced pressure, the crude product was purified by preparative thin layer chromatography using ethyl acetate and cyclohexane (1:4) as eluant. ## References - G. Tennant, Comprehensive Organic Chemistry, Pergamon press, London, 1979, Vol. 2, p.383. - 2. R. Balicki, Chem. Ber., 1990, 647. - 3. N. Tokitoh, R. Okazaki, Chem. Lett., 1985, 1517. - 4. D. H. R. Barton, A. Fekih, X. Lusinchi, Tetrahedron Lett., 1985, 38, 4603. - P. Ilankumaran, S. Chaw, Tetrahedron Lett., 1995, 36, 4881. - 6. A. Jeevanandam, C. Cartwright, Y. Ling, Syn. Commun., 2000, 17, 3153. - 7. D. K. Dutta, D. Konwar, J. Chem. Res (s), **1998**, 266. - 8. D. Konwar, R. C.Boruah, J. S. Sandhu, Synthesis, 1990, 337. - S. Sivasubramanian, V. Ramamoorthy, G. Balasubramanian, Org. Prep. Proc. Int., 1995, 27, 221 - 10. Y. M. Zhang, Y. K. Liu, Chin. J. Chem., 2000, 2, 12. - 11. H. Wu, R. Chen, Y. M. Zhang, J. Chem. Res (s)., 2000, 248. Received 16 April, 2001